# Good: Process ingredients in batchesdefprocess_ingredients(ingredients,batch_size=100):for i inrange(0, len(ingredients), batch_size): batch = ingredients[i:i + batch_size]process_batch(batch)# Bad: Processing one at a timefor ingredient in ingredients:process_single(ingredient)# Less efficient
Performance Optimization
Caching Results
from functools import lru_cache
# Good: Cache expensive computations
@lru_cache(maxsize=128)
def analyze_ingredient(ingredient):
return TasteTester().analyze(ingredient)
# Bad: Recomputing every time
def analyze_ingredient(ingredient):
return TasteTester().analyze(ingredient) # No caching
Efficient Data Structures
# Good: Use appropriate data structures
from collections import defaultdict
class Recipe:
def __init__(self):
self.ingredients = defaultdict(float) # Efficient for ingredient tracking
# Bad: Using inefficient structures
class Recipe:
def __init__(self):
self.ingredients = [] # Less efficient for lookups
Resource Management
Context Managers
# Good: Use context managers for resource cleanup
with kitchen.temperature_monitor() as monitor:
result = kitchen.cook(ingredient)
data = monitor.get_data()
# Bad: Manual resource management
monitor = kitchen.temperature_monitor()
try:
result = kitchen.cook(ingredient)
data = monitor.get_data()
finally:
monitor.cleanup() # More error-prone
Connection Pooling
# Good: Use connection pooling
from tomatopy import ConnectionPool
pool = ConnectionPool(max_connections=10)
with pool.get_connection() as conn:
conn.execute_operation()
# Bad: Creating new connections each time
conn = create_connection() # Less efficient
conn.execute_operation()
conn.close()
Algorithm Optimization
Efficient Search
# Good: Use binary search for sorted data
def find_optimal_temperature(sorted_temps, target):
left, right = 0, len(sorted_temps) - 1
while left <= right:
mid = (left + right) // 2
if sorted_temps[mid] == target:
return mid
elif sorted_temps[mid] < target:
left = mid + 1
else:
right = mid - 1
return -1
# Bad: Linear search
def find_optimal_temperature(temps, target):
for i, temp in enumerate(temps):
if temp == target:
return i
return -1
Parallel Processing
from concurrent.futures import ThreadPoolExecutor
# Good: Process multiple ingredients in parallel
def process_ingredients_parallel(ingredients):
with ThreadPoolExecutor(max_workers=4) as executor:
results = list(executor.map(process_ingredient, ingredients))
return results
# Bad: Sequential processing
def process_ingredients_sequential(ingredients):
results = []
for ingredient in ingredients:
results.append(process_ingredient(ingredient))
return results
Code Organization
Modular Design
# Good: Modular code structure
class IngredientProcessor:
def process(self, ingredient):
self.validate(ingredient)
self.prepare(ingredient)
self.analyze(ingredient)
# Bad: Monolithic functions
def process_ingredient(ingredient):
# All processing in one function
validate_ingredient(ingredient)
prepare_ingredient(ingredient)
analyze_ingredient(ingredient)