All pages
Powered by GitBook
1 of 3

Loading...

Loading...

Loading...

Best Practices

Code Efficiency Best Practices

This guide outlines best practices for writing efficient and performant code with TomatoPy.

Memory Management

Efficient Ingredient Creation

# Good: Create ingredients with minimal memory usage
tomato = Tomato(
    ripeness=0.8,
    variety="San Marzano",
    weight=150
)

# Bad: Creating unnecessary copies
tomato_copy = tomato.copy()  # Unnecessary memory usage

Batch Processing

# Good: Process ingredients in batches
def process_ingredients(ingredients, batch_size=100):
    for i in range(0, len(ingredients), batch_size):
        batch = ingredients[i:i + batch_size]
        process_batch(batch)

# Bad: Processing one at a time
for ingredient in ingredients:
    process_single(ingredient)  # Less efficient

Performance Optimization

Caching Results

from functools import lru_cache

# Good: Cache expensive computations
@lru_cache(maxsize=128)
def analyze_ingredient(ingredient):
    return TasteTester().analyze(ingredient)

# Bad: Recomputing every time
def analyze_ingredient(ingredient):
    return TasteTester().analyze(ingredient)  # No caching

Efficient Data Structures

# Good: Use appropriate data structures
from collections import defaultdict

class Recipe:
    def __init__(self):
        self.ingredients = defaultdict(float)  # Efficient for ingredient tracking

# Bad: Using inefficient structures
class Recipe:
    def __init__(self):
        self.ingredients = []  # Less efficient for lookups

Resource Management

Context Managers

# Good: Use context managers for resource cleanup
with kitchen.temperature_monitor() as monitor:
    result = kitchen.cook(ingredient)
    data = monitor.get_data()

# Bad: Manual resource management
monitor = kitchen.temperature_monitor()
try:
    result = kitchen.cook(ingredient)
    data = monitor.get_data()
finally:
    monitor.cleanup()  # More error-prone

Connection Pooling

# Good: Use connection pooling
from tomatopy import ConnectionPool

pool = ConnectionPool(max_connections=10)
with pool.get_connection() as conn:
    conn.execute_operation()

# Bad: Creating new connections each time
conn = create_connection()  # Less efficient
conn.execute_operation()
conn.close()

Algorithm Optimization

Efficient Search

# Good: Use binary search for sorted data
def find_optimal_temperature(sorted_temps, target):
    left, right = 0, len(sorted_temps) - 1
    while left <= right:
        mid = (left + right) // 2
        if sorted_temps[mid] == target:
            return mid
        elif sorted_temps[mid] < target:
            left = mid + 1
        else:
            right = mid - 1
    return -1

# Bad: Linear search
def find_optimal_temperature(temps, target):
    for i, temp in enumerate(temps):
        if temp == target:
            return i
    return -1

Parallel Processing

from concurrent.futures import ThreadPoolExecutor

# Good: Process multiple ingredients in parallel
def process_ingredients_parallel(ingredients):
    with ThreadPoolExecutor(max_workers=4) as executor:
        results = list(executor.map(process_ingredient, ingredients))
    return results

# Bad: Sequential processing
def process_ingredients_sequential(ingredients):
    results = []
    for ingredient in ingredients:
        results.append(process_ingredient(ingredient))
    return results

Code Organization

Modular Design

# Good: Modular code structure
class IngredientProcessor:
    def process(self, ingredient):
        self.validate(ingredient)
        self.prepare(ingredient)
        self.analyze(ingredient)

# Bad: Monolithic functions
def process_ingredient(ingredient):
    # All processing in one function
    validate_ingredient(ingredient)
    prepare_ingredient(ingredient)
    analyze_ingredient(ingredient)

Clean Interfaces

# Good: Clean interface design
class Kitchen:
    def cook(self, ingredient, **kwargs):
        self._validate_parameters(kwargs)
        self._prepare_environment()
        return self._execute_cooking(ingredient, kwargs)

# Bad: Complex interface
def cook(ingredient, temperature=None, duration=None, method=None, 
         stirring_frequency=None, humidity=None, pressure=None):
    # Too many parameters
    pass

Error Handling

Efficient Error Recovery

# Good: Graceful error recovery
def process_recipe(recipe):
    try:
        result = kitchen.cook_recipe(recipe)
        return result
    except TemperatureError:
        # Handle temperature error
        return adjust_temperature(recipe)
    except IngredientError:
        # Handle ingredient error
        return substitute_ingredients(recipe)
    finally:
        cleanup_resources()

# Bad: No error recovery
def process_recipe(recipe):
    result = kitchen.cook_recipe(recipe)
    return result  # No error handling

Resource Cleanup

# Good: Proper resource cleanup
class Kitchen:
    def __init__(self):
        self.resources = []

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.cleanup()

# Bad: Manual cleanup
def use_kitchen():
    kitchen = Kitchen()
    try:
        # Use kitchen
        pass
    finally:
        kitchen.cleanup()

Testing and Profiling

Performance Testing

# Good: Performance testing
import time
import cProfile

def profile_operation(func):
    def wrapper(*args, **kwargs):
        profiler = cProfile.Profile()
        result = profiler.runcall(func, *args, **kwargs)
        profiler.print_stats()
        return result
    return wrapper

# Bad: No performance testing
def operation():
    # No performance monitoring
    pass

Memory Profiling

# Good: Memory profiling
from memory_profiler import profile

@profile
def memory_intensive_operation():
    # Operation to profile
    pass

# Bad: No memory profiling
def memory_intensive_operation():
    # No memory monitoring
    pass

Best Practices Summary

  1. Memory Management

    • Use efficient data structures

    • Implement batch processing

    • Avoid unnecessary copies

  2. Performance Optimization

    • Cache expensive computations

    • Use appropriate algorithms

    • Implement parallel processing

  3. Resource Management

    • Use context managers

    • Implement connection pooling

    • Clean up resources properly

  4. Code Organization

    • Follow modular design

    • Create clean interfaces

    • Maintain separation of concerns

  5. Error Handling

    • Implement graceful recovery

    • Clean up resources properly

    • Log errors appropriately

Next Steps

  • Virtual Kitchen Management - Learn kitchen optimization

  • API Reference - Explore the full API

  • Tutorials - Learn advanced techniques

Virtual Kitchen Management

This guide outlines best practices for managing virtual kitchens efficiently in TomatoPy.

Kitchen Setup

Basic Configuration

Advanced Configuration

Resource Management

Equipment Allocation

Space Optimization

Workflow Management

Task Scheduling

Workflow Optimization

Temperature Control

Zone Management

Temperature Monitoring

Safety Management

Safety Protocols

Emergency Procedures

Maintenance

Equipment Maintenance

Cleaning Protocols

Best Practices Summary

  1. Resource Management

    • Efficient equipment allocation

    • Space optimization

    • Resource tracking

  2. Workflow Management

    • Task scheduling

    • Workflow optimization

    • Dependency management

  3. Temperature Control

    • Zone management

    • Temperature monitoring

    • Alert systems

  4. Safety Management

    • Safety protocols

    • Emergency procedures

    • Violation handling

  5. Maintenance

    • Equipment maintenance

    • Cleaning protocols

    • Schedule management

Next Steps

  • - Explore the full API

  • - Learn advanced techniques

  • - Learn optimization techniques

from tomatopy import Kitchen, KitchenHardware

# Initialize kitchen with basic settings
kitchen = Kitchen(
    temperature=22,  # Celsius
    humidity=0.65,
    ventilation="standard",
    lighting="bright"
)

# Configure hardware
hardware = KitchenHardware()
hardware.configure(
    oven={"type": "convection", "capacity": "large"},
    stove={"burners": 4, "type": "gas"},
    refrigerator={"capacity": "medium", "temperature": 4}
)
# Configure advanced settings
kitchen.configure(
    temperature_control={
        "precision": 0.1,
        "zones": ["prep", "cooking", "storage"]
    },
    humidity_control={
        "precision": 0.05,
        "zones": ["prep", "cooking", "storage"]
    },
    ventilation={
        "type": "smart",
        "zones": ["prep", "cooking", "storage"],
        "filters": ["grease", "smoke", "odor"]
    }
)
# Good: Efficient equipment allocation
class KitchenManager:
    def __init__(self):
        self.equipment_pool = {}
        self.allocations = {}

    def allocate_equipment(self, recipe):
        required = recipe.get_required_equipment()
        available = self.get_available_equipment()
        
        for item in required:
            if item in available:
                self.allocations[recipe.id] = item
                return True
        return False

# Bad: No equipment management
def cook_recipe(recipe):
    # No equipment allocation
    pass
# Good: Optimize kitchen space
class KitchenLayout:
    def __init__(self):
        self.workstations = {}
        self.workflow = {}

    def optimize_layout(self, recipes):
        for recipe in recipes:
            required_space = recipe.get_required_space()
            available_space = self.get_available_space()
            
            if self.can_fit(required_space, available_space):
                self.allocate_space(recipe, available_space)

# Bad: No space optimization
def prepare_recipe(recipe):
    # No space management
    pass
# Good: Efficient task scheduling
class KitchenScheduler:
    def __init__(self):
        self.tasks = []
        self.resources = {}

    def schedule_tasks(self, recipes):
        for recipe in recipes:
            tasks = recipe.get_tasks()
            for task in tasks:
                if self.can_schedule(task):
                    self.tasks.append(task)
                else:
                    self.handle_scheduling_conflict(task)

# Bad: No task scheduling
def process_recipes(recipes):
    for recipe in recipes:
        # No scheduling
        process_recipe(recipe)
# Good: Optimize workflow
class WorkflowOptimizer:
    def optimize_workflow(self, tasks):
        # Sort tasks by priority and dependencies
        sorted_tasks = self.topological_sort(tasks)
        
        # Group compatible tasks
        task_groups = self.group_tasks(sorted_tasks)
        
        # Schedule groups efficiently
        return self.schedule_groups(task_groups)

# Bad: No workflow optimization
def process_tasks(tasks):
    for task in tasks:
        # No optimization
        process_task(task)
# Good: Manage temperature zones
class TemperatureManager:
    def __init__(self):
        self.zones = {}
        self.controllers = {}

    def manage_zones(self):
        for zone, settings in self.zones.items():
            current_temp = self.get_zone_temperature(zone)
            target_temp = settings["target"]
            
            if abs(current_temp - target_temp) > settings["tolerance"]:
                self.adjust_zone_temperature(zone, target_temp)

# Bad: No zone management
def set_temperature(temp):
    # No zone control
    pass
# Good: Monitor temperatures
class TemperatureMonitor:
    def __init__(self):
        self.sensors = {}
        self.alerts = []

    def monitor_temperatures(self):
        for zone, sensor in self.sensors.items():
            temp = sensor.read()
            if self.is_temperature_unsafe(temp, zone):
                self.trigger_alert(zone, temp)

# Bad: No temperature monitoring
def check_temperature():
    # No monitoring
    pass
# Good: Implement safety protocols
class SafetyManager:
    def __init__(self):
        self.protocols = {}
        self.violations = []

    def enforce_safety(self, operation):
        if not self.check_safety_protocols(operation):
            self.handle_safety_violation(operation)
            return False
        return True

# Bad: No safety protocols
def perform_operation(operation):
    # No safety checks
    pass
# Good: Handle emergencies
class EmergencyManager:
    def __init__(self):
        self.procedures = {}
        self.emergency_contacts = []

    def handle_emergency(self, emergency_type):
        if emergency_type in self.procedures:
            self.execute_procedure(emergency_type)
            self.notify_emergency_contacts(emergency_type)

# Bad: No emergency handling
def handle_problem(problem):
    # No emergency procedures
    pass
# Good: Manage equipment maintenance
class MaintenanceManager:
    def __init__(self):
        self.schedule = {}
        self.maintenance_history = []

    def schedule_maintenance(self, equipment):
        if equipment.needs_maintenance():
            self.add_to_schedule(equipment)
            self.notify_maintenance_team(equipment)

# Bad: No maintenance scheduling
def fix_equipment(equipment):
    # No maintenance management
    pass
# Good: Implement cleaning protocols
class CleaningManager:
    def __init__(self):
        self.protocols = {}
        self.cleaning_schedule = []

    def manage_cleaning(self):
        for area in self.get_areas():
            if area.needs_cleaning():
                self.schedule_cleaning(area)
                self.notify_cleaning_staff(area)

# Bad: No cleaning management
def clean_area(area):
    # No cleaning protocols
    pass
API Reference
Tutorials
Code Efficiency